A soft, bistable valve for autonomous control of soft actuators

Almost all pneumatic and hydraulic actuators useful for mesoscale functions rely on hard valves for control. This article describes a soft, elastomeric valve that contains a bistable membrane, which acts as a mechanical “switch” to control air flow. A structural instability—often called “snap-through”—enables rapid transition between two stable states of the membrane. The snap-upward pressure, P1 (kilopascals), of the membrane differs from the snap-downward pressure, P2 (kilopascals). The values P1 and P2 can be designed by changing the geometry and the material of the membrane. The valve does not require power to remain in either “open” or “closed” states (although switching does require energy), can be designed to be bistable, and can remain in either state without further applied pressure. When integrated in a feedback pneumatic circuit, the valve functions as a pneumatic oscillator (between the pressures P1 and P2), generating periodic motion using air from a single source of constant pressure. The valve, as a component of pneumatic circuits, enables (i) a gripper to grasp a ball autonomously and (ii) autonomous earthworm-like locomotion using an air source of constant pressure. These valves are fabricated using straightforward molding and offer a way of integrating simple control and logic functions directly into soft actuators and robots.

Source: Sciencemag.org – Science Robotics Latest Content

Exploration of underwater life with an acoustically controlled soft robotic fish

Closeup exploration of underwater life requires new forms of interaction, using biomimetic creatures that are capable of agile swimming maneuvers, equipped with cameras, and supported by remote human operation. Current robotic prototypes do not provide adequate platforms for studying marine life in their natural habitats. This work presents the design, fabrication, control, and oceanic testing of a soft robotic fish that can swim in three dimensions to continuously record the aquatic life it is following or engaging. Using a miniaturized acoustic communication module, a diver can direct the fish by sending commands such as speed, turning angle, and dynamic vertical diving. This work builds on previous generations of robotic fish that were restricted to one plane in shallow water and lacked remote control. Experimental results gathered from tests along coral reefs in the Pacific Ocean show that the robotic fish can successfully navigate around aquatic life at depths ranging from 0 to 18 meters. Furthermore, our robotic fish exhibits a lifelike undulating tail motion enabled by a soft robotic actuator design that can potentially facilitate a more natural integration into the ocean environment. We believe that our study advances beyond what is currently achievable using traditional thruster-based and tethered autonomous underwater vehicles, demonstrating methods that can be used in the future for studying the interactions of aquatic life and ocean dynamics.

Source: Sciencemag.org – Science Robotics Latest Content

An origami-inspired, self-locking robotic arm that can be folded flat

A foldable arm is one of the practical applications of folding. It can help mobile robots and unmanned aerial vehicles (UAVs) overcome access issues by allowing them to reach into confined spaces. The origami-inspired design enables a foldable structure to be lightweight, compact, and scalable while maintaining its kinematic behavior. However, the lack of structural stiffness has been a major limitation in the practical use of origami-inspired designs. Resolving this obstacle without losing the inherent advantages of origami is a challenge. We propose a solution by implementing a simple stiffening mechanism that uses an origami principle of perpendicular folding. The simplicity of the stiffening mechanism enables an actuation system to drive shape and stiffness changes with only a single electric motor. Our results show that this design was effective for a foldable arm and allowed a UAV to perform a variety of tasks in a confined space.

Source: Sciencemag.org – Science Robotics Latest Content

Human-in-the-loop optimization of hip assistance with a soft exosuit during walking

Wearable robotic devices have been shown to substantially reduce the energy expenditure of human walking. However, response variance between participants for fixed control strategies can be high, leading to the hypothesis that individualized controllers could further improve walking economy. Recent studies on human-in-the-loop (HIL) control optimization have elucidated several practical challenges, such as long experimental protocols and low signal-to-noise ratios. Here, we used Bayesian optimization—an algorithm well suited to optimizing noisy performance signals with very limited data—to identify the peak and offset timing of hip extension assistance that minimizes the energy expenditure of walking with a textile-based wearable device. Optimal peak and offset timing were found over an average of 21.4 ± 1.0 min and reduced metabolic cost by 17.4 ± 3.2% compared with walking without the device (mean ± SEM), which represents an improvement of more than 60% on metabolic reduction compared with state-of-the-art devices that only assist hip extension. In addition, our results provide evidence for participant-specific metabolic distributions with respect to peak and offset timing and metabolic landscapes, lending support to the hypothesis that individualized control strategies can offer substantial benefits over fixed control strategies. These results also suggest that this method could have practical impact on improving the performance of wearable robotic devices.

Source: Sciencemag.org – Science Robotics Latest Content

Kirigami skins make a simple soft actuator crawl

Bioinspired soft machines made of highly deformable materials are enabling a variety of innovative applications, yet their locomotion typically requires several actuators that are independently activated. We harnessed kirigami principles to significantly enhance the crawling capability of a soft actuator. We designed highly stretchable kirigami surfaces in which mechanical instabilities induce a transformation from flat sheets to 3D-textured surfaces akin to the scaled skin of snakes. First, we showed that this transformation was accompanied by a dramatic change in the frictional properties of the surfaces. Then, we demonstrated that, when wrapped around an extending soft actuator, the buckling-induced directional frictional properties of these surfaces enabled the system to efficiently crawl.

Source: Sciencemag.org – Science Robotics Latest Content