Science News

Control of molecular shuttles by designing electrical and mechanical properties of microtubules

Kinesin-driven microtubules have been focused on to serve as molecular transporters, called “molecular shuttles,” to replace micro/nanoscale molecular manipulations necessitated in micro total analysis systems. Although transport, concentration, and detection of target molecules have been demonstrated, controllability of the transport directions is still a major challenge. Toward broad applications of molecular shuttles by defining multiple moving directions for selective molecular transport, we integrated a bottom-up molecular design of microtubules and a top-down design of a microfluidic device. The surface charge density and stiffness of microtubules were controlled, allowing us to create three different types of microtubules, each with different gliding directions corresponding to their electrical and mechanical properties. The measured curvature of the gliding microtubules enabled us to optimize the size and design of the device for molecular sorting in a top-down approach. The integrated bottom-up and top-down design achieved separation of stiff microtubules from negatively charged, soft microtubules under an electric field. Our method guides multiple microtubules by integrating molecular control and microfluidic device design; it is not only limited to molecular sorters but is also applicable to various molecular shuttles with the high controllability in their movement directions.

Source: Sciencemag.org – Science Robotics Latest Content

Robotic metamorphosis by origami exoskeletons

Changing the inherent physical capabilities of robots by metamorphosis has been a long-standing goal of engineers. However, this task is challenging because of physical constraints in the robot body, each component of which has a defined functionality. To date, self-reconfiguring robots have limitations in their on-site extensibility because of the large scale of today’s unit modules and the complex administration of their coordination, which relies heavily on on-board electronic components. We present an approach to extending and changing the capabilities of a robot by enabling metamorphosis using self-folding origami “exoskeletons.” We show how a cubical magnet “robot” can be remotely moved using a controllable magnetic field and hierarchically develop different morphologies by interfacing with different origami exoskeletons. Activated by heat, each exoskeleton is self-folded from a rectangular sheet, extending the capabilities of the initial robot, such as enabling the manipulation of objects or locomotion on the ground, water, or air. Activated by water, the exoskeletons can be removed and are interchangeable. Thus, the system represents an end-to-end (re)cycle. We also present several robot and exoskeleton designs, devices, and experiments with robot metamorphosis using exoskeletons.

Source: Sciencemag.org – Science Robotics Latest Content

A biorobotic adhesive disc for underwater hitchhiking inspired by the remora suckerfish

Remoras of the ray-finned fish family Echeneidae have the remarkable ability to attach to diverse marine animals using a highly modified dorsal fin that forms an adhesive disc, which enables hitchhiking on fast-swimming hosts despite high magnitudes of fluid shear. We present the design of a biologically analogous, multimaterial biomimetic remora disc based on detailed morphological and kinematic investigations of the slender sharksucker (Echeneis naucrates). We used multimaterial three-dimensional printing techniques to fabricate the main disc structure whose stiffness spans three orders of magnitude. To incorporate structures that mimic the functionality of the remora lamellae, we fabricated carbon fiber spinules (270 μm base diameter) using laser machining techniques and attached them to soft actuator–controlled lamellae. Our biomimetic prototype can attach to different surfaces and generate considerable pull-off force—up to 340 times the weight of the disc prototype. The rigid spinules and soft material overlaying the lamellae engage with the surface when rotated, just like the discs of live remoras. The biomimetic kinematics result in significantly enhanced frictional forces across the disc on substrates of different roughness. Using our prototype, we have designed an underwater robot capable of strong adhesion and hitchhiking on a variety of surfaces (including smooth, rough, and compliant surfaces, as well as shark skin). Our results demonstrate that there is promise for the development of high-performance bioinspired robotic systems that may be used in a number of applications based on an understanding of the adhesive mechanisms used by remoras.

Source: Sciencemag.org – Science Robotics Latest Content